
THE
TRANSFORMATIVE
POTENTIAL OF

IN QA AUTOMATION

Disclaimer: All logos are properties of their respective owners

Table of Content

1. How GitHub Copilot helps us in writing
Automation Tests... 3

2. Problem Statement: Testing Dynamic
Single-Page Applications with Playwright..... 6

3. Problem Statement: Chained API Requests
with Complex Error Handling and Data
Dependency...8

4. Practical Uses in Software Development.... 10

5. Future Directions... 13

6. Conclusion... 14

SAY TO YOUR AI
PAIR PROGRAMMER

© Happiest Minds | 02 Disclaimer: All logos are properties of their respective owners

GitHub Copilot represents a significant advancement in the toolkit of automation testers by
providing an AI-driven coding assistant directly within their development environment, specifically
Visual Studio Code. Here are some key features of GitHub Copilot that are particularly beneficial
for automation testers.

How GitHub Copilot helps us
in writing Automation Tests1

GitHub Copilot excels in o�ering
context-aware code completions,
not just for simple lines but for
entire functions or blocks based
on the current code and
comments. This feature allows
automation testers to rapidly
generate test scripts that are
aligned with the application’s logic
and requirements, minimizing the
time spent on routine coding
tasks.

GitHub Codex
AI Model

Trained on Public
GitHub Code
Repositories

Provide Context
(Open files / code)

Provide
Suggestions

Provide
Feedback on
suggestions

(corrections, ...)

IDE

1.1 Context-Aware Code Suggestions

Disclaimer: All logos are properties of their respective owners © Happiest Minds | 03

© Happiest Minds | 04

Unlike traditional auto complete tools, Copilot can generate real-time, relevant code suggestions
by predicting not just the next line of code but potentially the next several lines or entire functions.
For testers, this means quicker script development and the ability to focus on higher-level test
planning and execution.

1.2 Real-Time Code Generation

Copilot supports a wide array of programming
languages and frameworks commonly used in
automation testing, such as JavaScript, Python,
Java, and more. This broad support ensures that
automation testers can leverage Copilot's
capabilities regardless of the tech stack used for
their testing frameworks like Selenium, Cypress,
or Playwright.

1.3 Support for Multiple
Programming Languages

For automation testers, GitHub
Copilot is more than just a coding
assistant; it acts as a catalyst for
increased productivity, enhanced
learning, and deeper focus on
creating more effective and
comprehensive test suites. By
reducing the mechanical aspects of
coding, Copilot allows testers to
devote more energy to strategic
tasks like test design and
optimization, thereby enhancing the
overall quality of software testing
efforts.

GitHub Copilot provides an intuitive interface for interacting with its code suggestions directly within
Visual Studio Code, allowing users to quickly accept or reject suggestions as they code. GitHub
Copilot aims to enhance productivity and facilitate a more e�cient coding experience by providing
intelligent suggestions that developers can easily accept, reject, or modify as they work.

1.4 Code suggestions directly within
Visual Studio Code

© Happiest Minds | 05

GitHub Copilot can
suggest appropriate
dynamic selectors and
wait commands that
ensure elements are
fully loaded and ready
for interaction before
proceeding. This is
crucial in SPAs where
elements may appear
conditionally.

Example Code with Copilot:
As you type commands to interact with dynamically loaded
elements, Copilot may suggest:

Scenario

Typical Issues in Complex Playwright Automation

How GitHub Copilot Resolves This Issue

Problem Statement
Testing Dynamic Single-Page
Applications with Playwright

2

Imagine testing an SPA that includes a sequence of user interactions leading up to a final submission
form. Each step may reveal new, dynamically loaded elements based on the data entered or choices
made in the previous steps. These elements are not only loaded asynchronously but may also
depend on data fetched from APIs in response to user inputs.

Dynamic Content Loading
Ensuring elements are
interactable as they load
dynamically based on
previous user actions or API
responses.

State Dependency
Each step may alter the state
of the application, which
influences subsequent steps.

Robust Validation
Validating the state of the
application at various stages
to ensure correct behaviour
throughout the test.

Writing Dynamic Selectors and Waits1

// Assume you have filled in the first part of a form and submitted it

await page.fill(’#input-field’ , ‘example data’);
await page.click(’#submit-button’);

// Copilot suggests waiting for the next set of dynamic elements
await page.waitforSelector(’#dyanmic-loaded-element’, { state: ‘visible’ })

// Interact with new elements
await page.check(’#checkbox-for-options’);
await page.click(’#next-section-button’);

// Copilot can suggest assertions to check if the SPA state is as expected
await expect(page.locator(’#status-display’)).toHaveText(’Processing complete’);

© Happiest Minds | 06

Handling API calls that a�ect the UI can be tricky. Copilot can provide snippets to handle these
e�ectively, ensuring that the UI updates are captured in the tests.

// Example of handling an API call response before proceeding

await page.click(’#fetch-data-button’);
await page.waitForResponse(response => response.url() === ’https://api.example.com/data’);

// Validate the response has affected the page as expected
await expect(page.locator(’#response-output’)).toHaveText(’Data loaded successfully’);

// Navigate through a complex multi-step process

await page.fill(’#start-date’ , ‘2021-01-01’);
await page.fill(’#end-date’ , ‘2021-12-31’);
await page.click(’#load-data-for-period’);
await page.waitForSelector(‘#data-summary’ , { state: ‘visible’ });

// Copilot suggests checking that all parts of the summary are correct
await expect(page.locator(’#summary-total’)).toHaveText(’Total: 1000’);
await expect(page.locator(’#summary-average’)).toHaveText(’Avaerage: 50’);

© Happiest Minds | 07

Handling Asynchronous Operations and API Interactions2

For scenarios involving multiple dependent interactions, Copilot can help orchestrate these steps,
ensuring that each action is performed in the correct order and validated properly.

Complex Scenario Management3

Example Code with Copilot:

Example Code with Copilot:

Benefits of Using GitHub Copilot in
Complex Playwright Automation

GitHub Copilot acts as a virtual assistant, suggesting contextually relevant code snippets and
handling patterns that can navigate the complexities of modern web applications, particularly
SPAs managed with Playwright. This tool aids in building robust, maintainable, and e�ective
automation tests.

Accelerates Development
Copilot can drastically speed
up the process of writing
complex automation scripts.

Improves Code Quality
By suggesting optimized and
proven coding patterns,
Copilot helps maintain high
quality and reliability in test
scripts.

Enhances Learning
For new developers or
testers, Copilot serves as an
on-the-fly educational tool,
providing guidance on best
practices in automation.

Problem Statement
Chained API Requests with Complex
Error Handling and Data Dependency

3
Scenario

Typical Issues in Complex Cypress API Testing

In advanced API testing scenarios, multiple interconnected API calls might be required. For instance,
fetching a user's authentication token, using that token to access a user-specific resource, and then
performing an action based on that resource's data. Managing the dependencies between these
calls and ensuring robust error handling can become quite complex.

Managing Dependencies
Handling the output of one
API call and using it as an
input for subsequent calls.

Dynamic Data Handling
Extracting and using dynamic
data from responses.

Comprehensive Error
Handling
Appropriately handling
possible errors at each step
of the chain.

How GitHub Copilot Resolves This Issue

Code Suggestions for Chained Requests1
GitHub Copilot can
suggest patterns for
chaining requests in
Cypress, where the
output of one request
is smoothly passed to
the next, including
handling errors that
may occur in the
chain.

Example Code with Copilot:
While writing the initial API request to fetch an authentication
token, start typing, and Copilot might suggest.

// Fetch the authentication token
cy.request({
 method: ‘POST’,
 url: ‘/api/login’,
 body: {
 username: ‘exampleUser’,
 password: ‘examplePass’ }
}).then((response => {
 expect(response.body).to.have.property(’token’);
 const authToken = response.body.token;

// Use the token to fetch user-specific data
cy.request({
 method:’GET’,
 url: ‘/api/user/data’ ,
 headers: { ‘Authorization’ : ‘Bearer ${authToken}’ }
}).then((userDataResponse => {
 expect(userDataResponse.status).to.eq(200);
 // Extract and use data from the response
 const userData = userDataResponse.body;

 // Further action based on userData
 // Copilot might suggest handling userData to perform further actions
 });
});

© Happiest Minds | 08

Copilot can help draft comprehensive error handling for each step of the API chain, ensuring the test
suite can reliably handle and report errors.

cy.request({
 method: ‘GET’ ,
 url: ‘/api/resource’ ,
 failOnStatusCode: false
}).then((response) => {
 if (response.status === 404) {
 cy.log(’Resource not found, handling error...’);
 } else {
 expect(response.body).to.include(’expected data’);
 }
});

// Navigate through a complex multi-step process

cy.request(‘GET’ , ‘/api/resource’).then((response) => {
 const details = response.body.details;
 expect(details).to.have.property(’name’).and.to.not.be.null;
// Copilot might suggest more specific checks depending on previous code patterns
});

Advanced Error Handling2

Dynamic Data Validation3

Example Code with Copilot:

Example Code with Copilot:

Benefits of Using GitHub Copilot in
Complex Cypress API Automation

GitHub Copilot can significantly enhance productivity and test reliability by guiding through complex
Cypress API test scenarios, ensuring that tests are well-structured, maintainable, and e�ective in
catching issues early in the development cycle.

Streamlined Code
Generation
Quickly generates code
snippets that fit into the
broader context of the test
scenario.

Enhanced Reliability
O�ers suggestions that
ensure tests are both
comprehensive and robust,
particularly in handling edge
cases and errors.

Educational Tool
Acts as a learning aid by
introducing advanced
Cypress features and best
practices through real-time
coding assistance.

Copilot can assist in writing assertions for dynamically extracted data, ensuring that the validations
are robust and cover various edge cases.

© Happiest Minds | 09

GitHub Copilot, as a cutting-edge AI-driven code assistant developed by GitHub in collaboration with
OpenAI, brings a revolutionary approach to software development. Its practical uses span across
various stages of the software development lifecycle, enhancing productivity, improving code quality,
and accelerating learning. Here’s an overview of some key practical applications of GitHub Copilot in
software development:

Automation testing often involves a lot of repetitive, boilerplate code, especially when setting up test
environments or writing initial setups for tests. GitHub Copilot can quickly generate this boilerplate
code based on minimal input from the tester, saving time and allowing testers to focus on more
complex tasks.

Example: Automatically generating the setup and teardown methods for test classes in frameworks
like pytest for Python or JUnit for Java.

4.1 Generating Boilerplate Code

GitHub Copilot can suggest entire test cases
based on the description provided in comments
or based on the function signatures it analyses.
This can be particularly useful in ensuring that all
potential scenarios are covered, including edge
cases that might not be immediately obvious.

Example: Generating test cases for boundary
value analysis and error handling paths by simply
describing the test intention in a comment.

4.2 Writing Comprehensive Test Cases

Practical Uses in Software
Development4

© Happiest Minds | 10

For API testing, writing tests can sometimes be monotonous and repetitive. GitHub Copilot can
generate test scripts for di�erent HTTP methods, handling various response codes and integrating
parameterized testing seamlessly.

Example: Writing comprehensive REST API tests for all CRUD operations with appropriate
validation checks.

4.3 Generating API Test Scripts

With its vast knowledge base, GitHub Copilot can suggest tests that cover less obvious paths or
errors in the code, significantly improving the coverage of the test suite without manual
intervention.

Example: Suggesting tests for race conditions or concurrency issues in a piece of code handling
multi-threaded operations.

4.4 Enhancing Test Coverage

GitHub Copilot can assist in creating complex mocks and stubs required for unit testing, especially
when dealing with external dependencies like databases, APIs, or third-party services.

Example: Generating code to mock network responses or database interactions, ensuring tests
remain fast and reliable without external dependencies.

4.5 Creating Mocks and Stubs

© Happiest Minds | 11

GitHub Copilot can help generate data-driven tests by providing templates that iterate over various
sets of input data. This helps in validating the robustness of the application under test against
various input combinations.

•Example: Creating parameterized test functions that run with multiple sets of data to validate form
inputs on a web application.

4.6 Data-Driven Testing

Security testing often involves checking for common vulnerabilities such as SQL injections, XSS,
and CSRF. GitHub Copilot can provide code snippets or entire test scripts that help automate these
security testing processes.

•Example: Generating scripts that attempt to exploit these vulnerabilities in a controlled testing
environment.

4.7 Automated Security Testing

GitHub Copilot can assist in writing scripts for performance testing by generating code to simulate
multiple users or high-load scenarios using tools like JMeter or Locust.
•Example: Creating user scenarios for load testing web applications, including user behaviour like
logging in, navigating pages, and performing actions concurrently.

4.8 Performance Testing Scripts

GitHub Copilot serves as a powerful
tool for automation testers by
reducing the time spent on routine
tasks, enhancing learning
opportunities, and encouraging the
adoption of best practices. Its ability
to provide context-aware code
suggestions revolutionizes the way
testers write and maintain their test
suites, potentially leading to higher
quality software and more e�cient
testing cycles.

© Happiest Minds | 12

Future Directions5
The integration of GitHub Copilot into the world
of automation testing opens up several exciting
future directions and possibilities. As AI and
machine learning technologies continue to
evolve, the role of tools like Copilot is set to

become increasingly significant in shaping how
automation testers work and contribute to
software development. Here are some potential
future directions for GitHub Copilot in the realm
of automation testing:

Expanding the integration capabilities of GitHub
Copilot to seamlessly work with a broader range
of testing frameworks and tools, such as
Selenium, Cypress, Appium, and beyond, could
significantly enhance its utility. Integration with
CI/CD pipelines and version control systems
could also streamline testing and deployment
processes, making Copilot an even more
indispensable part of the development lifecycle.

5.1 Integration with
Additional Tools and
Platforms

Leveraging more advanced AI techniques,
Copilot could evolve to not only suggest code
but also analyze existing code bases for
potential ine�ciencies or errors. It could
automatically generate test cases that cover
missing or under-tested code paths, greatly
improving test coverage and application
reliability.

5.2 Advanced Code
Analysis and Test
Generation

Future versions of GitHub Copilot could feature
improved learning algorithms that adapt more
dynamically to the coding habits of users. This
could involve more sophisticated pattern
recognition capabilities to better predict and
suggest relevant code, reducing the cognitive
load on testers and speeding up the
development process.

5.3 Learning and
Adaptation
Enhancements

As AI’s role in development expands, ensuring
ethical use and transparency in how AI models
like Copilot are trained and operate will be
crucial. Future developments could include
more transparent AI processes and the ability
for users to understand and control what data is
used to train these models.

5.4 Ethical AI Use
and Transparency

The future of GitHub Copilot in automation testing looks promising, with potential
enhancements that could transform it from a helpful tool to an essential part of every tester’s
toolkit. As Copilot evolves, it could play a pivotal role in driving innovation, efficiency, and
effectiveness in the testing domain, ultimately leading to higher quality software products and
faster development cycles.

© Happiest Minds | 13

In conclusion, GitHub Copilot stands as a
transformative tool for automation testers,
significantly enhancing their ability to write,
review, and maintain test scripts e�ciently. By
leveraging advanced AI to generate code
suggestions directly in Visual Studio Code,
Copilot not only boosts productivity but also
improves the quality of test scripts by
embedding best practices and modern
programming paradigms. However, while Copilot
o�ers numerous advantages, it also introduces
challenges that require careful consideration,

such as ensuring code integrity and managing
the over-reliance on automated suggestions. For
automation testers, GitHub Copilot is not just a
tool but a potential catalyst for innovation,
driving higher standards of testing and software
development when used judiciously alongside
human expertise. As the field of software testing
continues to evolve, embracing tools like GitHub
Copilot can be pivotal, provided testers remain
vigilant and proactive in integrating AI
capabilities into their workflows.

GitHub Copilot Documentation
OpenAI Research Papers
Studies on AI impact in test automation

A: Installation Guide for GitHub Copilot in VSCode
B: FAQs on GitHub Copilot Usage and Capabilities
C: Case Studies of GitHub Copilot in Large-Scale Enterprises

Conclusion6

References

Appendix

This white paper serves as a
comprehensive guide to
understanding and leveraging
GitHub Copilot within Visual
Studio Code to improve
coding practices, accelerate
learning curves, and enhance
overall productivity.

Akhilesh Shukla is a seasoned Senior Test Architect with
extensive experience in software testing and quality
assurance, currently leading QA initiatives at Happiest
Minds Technologies. Renowned for his expertise in
advanced test automation, Akhilesh excels in leveraging
tools like Cypress and Playwright to enhance software
quality. He is continuously contributing to the Testing
Practice across many automation solutions and has a
strong background in designing and implementing
comprehensive testing strategies.

About Happiest Minds

Happiest Minds Technologies Limited (NSE: HAPPSTMNDS), a Mindful IT Company, enables digital transformation for
enterprises and technology providers by delivering seamless customer experiences, business efficiency and actionable
insights. We do this by leveraging a spectrum of disruptive technologies such as: artificial intelligence, blockchain, cloud,
digital process automation, internet of things, robotics/drones, security, virtual/ augmented reality, etc. Positioned as ‘Born
Digital . Born Agile’, our capabilities span Product & Digital Engineering Services (PDES), Generative AI Business Services
(GBS) and Infrastructure Management & Security Services (IMSS). We deliver these services across industry groups: Banking,
Financial Services & Insurance (BFSI), EdTech, Healthcare & Life Sciences, Hi-Tech and Media & Entertainment, Industrial,
Manufacturing, Energy & Utilities, and Retail, CPG & Logistics. The company has been recognized for its excellence in
Corporate Governance practices by Golden Peacock and ICSI. A Great Place to Work Certified™ company, Happiest Minds is
headquartered in Bengaluru, India with operations in the U.S., UK, Canada, Australia, and the Middle East.

About the Author

Akhilesh Shukla
Senior Test Architect, PDES

For more information, write to us at business@happiestminds.com

www.happiestminds.com

© Happiest Minds | 14

https://www.happiestminds.com/
https://www.happiestminds.com/
https://www.happiestminds.com/services/digital-transformation/
https://www.happiestminds.com/services/artificial-intelligence-cognitive-computing/
https://www.happiestminds.com/services/blockchain-solutions-services/
https://www.happiestminds.com/services/cloud-data-center-advisory-transformation/
https://www.happiestminds.com/services/robotic-process-automation/
https://www.happiestminds.com/services/internet-of-things/
https://www.happiestminds.com/services/it-security-services/
https://www.happiestminds.com/services/ar-vr-mr/

